ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Microwave dielectric properties of (1 - x)ZnMoO₄-xTiO₂ composite ceramics

Jing Guo, Di Zhou, Hong Wang*, Xi Yao

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China

ARTICLE INFO

Article history:
Received 9 November 2010
Received in revised form 23 February 2011
Accepted 27 February 2011
Available online 5 March 2011

 $\it Keywords$: Microwave dielectric properties Composite LTCC $\it ZnMoO_4-TiO_2$

ABSTRACT

(1-x)ZnMoO₄-xTiO₂ (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO₄ phase coexists with the tetragonal rutile TiO₂ phase, and it is easy for silver to react with ZnMoO₄ to form Ag₂Zn₂(MoO₄)₃ phase and hard to react with TiO₂. When the volume fraction of TiO₂ (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1-x)ZnMoO₄-xTiO₂ composite ceramics increases from 8.0 to 25.2, the Q_f value changes in the range of 32,300–43,300 GHz, and the temperature coefficient τ_f value varies from -128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ε_f = 13.9, a Q_f = 40,400 GHz, and a τ_f = +2.0 ppm/°C.

© 2011 Published by Elsevier B.V.

1. Introduction

With the explosive growth of high frequency wireless communication technology, electronic components and substrates are in urgent need of improving performances and realizing miniaturization and integration. It is possible to integrate the passive components to a function module by low temperature cofired ceramic (LTCC) technology. Materials with low sintering temperature (<960°C), high quality factor (Q_f) value and near zero temperature coefficient of resonant frequency (τ_f) are necessary for the applications [1-4]. Recently, a number of new microwave dielectric ceramics have been developed, such as AWO₄ and AMoO₄ (A=Mg, Mn, Zn, Ca, Sr, and Ba). AWO₄ compounds have good dielectric properties: permittivity is 8-17, Qf value is 32,000–69,000 GHz, and τ_f value is -53 to -78 ppm/ $^{\circ}$ C [5]. AMoO₄ compounds are also suitable for applications of microwave dielectric materials, with low permittivity (7-11), low dielectric loss (37,000–90,000 GHz) and relatively small temperature coefficient of resonant frequency (-57 to -87 ppm/ $^{\circ}$ C) [6]. Compared with AWO₄, AMoO₄ ceramics have lower sintering temperature, especially ZnMoO₄. However, all of them have negative τ_f values. Normally, there are two methods to design a material with a stable temperature coefficient: (a) composite materials by mixing two or more component materials with opposite τ_f values, including ZnAl₂O₄-TiO₂, Ca₂P₂O₇-TiO₂, CaWO₄-TiO₂, Zn₂Te₃O₈-TiO₂, $Zn_2TiO_4-TiO_2$, NiNb₂O₆-TiO₂, and Bi₂MoO₆-TiO₂ [7-13]; (b) formation of solid solutions, such as complex perovskites and

(1-x)ZnMoO₄-xTiO₂ mixture ceramics were studied.

The phase compositions of the specimens were identified using X-ray diffraction with Cu K α radiation (Rigaku D/MAX-2400 X-ray diffractometry, Tokyo, Japan). The microstructure was observed with a scanning electron microscope (JSM-6460, JEOL, Tokyo, Japan). The bulk densities of the specimens were measured by Archimedes' method. The microwave dielectric properties were measured using the TE₀₁₈ method with a network analyzer (8720ES, Agilent, Palo Alto, CA) and a temperature chamber (Delta 9023, Delta Design, Poway, CA). The temperature coefficient of resonant frequency (τ_f) can be obtained by the following equation:

temperature range from 750 °C to 975 °C for 2 h with a heating rate of 3 °C/min.

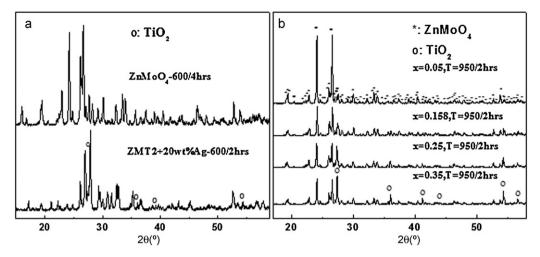
other systems [14–17]. In the recent investigation, ZnMoO₄ sintered at 800 °C presents excellent microwave dielectric properties

with ε_r = 8.67 (permittivity), Q_f = 49,900 GHz, τ_f = -87.49 ppm/°C

[6]. In order to compensate the negative τ_f value of ZnMoO₄, rutile TiO₂ (ε_r = 105, Q_f = 46,000 GHz, τ_f = +465 ppm/°C) [18] was

selected to form a (1-x)ZnMoO₄-xTiO₂ mixture. In this work, the

synthesis, sintering behavior, phase composition, chemical com-


patibility with silver, and microwave dielectric properties of the

$$\tau_f = \frac{f_{85} - f_{25}}{f_{26}(85 - 25)} \times 10^6 (\text{ppm})^{\circ} \text{C}) \tag{1}$$

^{2.} Experimental

All the samples were prepared by the conventional solid state reaction process. ZnO (>99%, Sinopharm Chemical Reagent Co., Ltd., China), MoO₃ (>99%, Fuchen Chemical Reagents, Tianjin, China) and rutile TiO₂ (>99%, Linghua Co., Ltd., Zhaoqing, China) were used as starting materials. The ZnMoO₄ powders were synthesized by calcining in air at 600 °C for 4 h. The ZnMoO₄ and TiO₂ powders were mixed according to the following stoichiometrics: (1 – x)ZnMoO₄ – xTiO₂ (x = 0.0, 0.05, 0.158, 0.25 and 0.35; ZM, ZMT1, ZMT2, ZMT3, ZMT4 were used for abbreviations). The mixed powders were milled with ethanol and Zirconia milling media (2 mm in diameter) for 4 h using a planet ball-milling system whose running speed is 150 rpm, and then dried. The final powders mixed with PVA binder were pressed into cylinder samples (10 mm in diameter and 4–5 mm in height) and these pellets were sintered in the

^{*} Corresponding author. Tel.: +86 2982668679; fax: +86 2982668794. E-mail address: hwang@mail.xjtu.edu.cn (H. Wang).

Fig. 1. XRD patterns of calcined ZnMoO₄ powders, ZMT2 cofired with 20 wt% Ag and sintered (1-x)ZnMoO₄-xTiO₂ composites (*, triclinic ZnMoO₄ phase; O, tetragonal rutile phase).

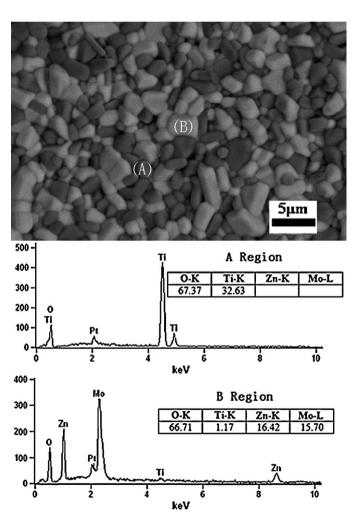
where f_{85} and f_{25} were the resonant frequencies at 85 °C and 25 °C, respectively.

3. Results and discussions

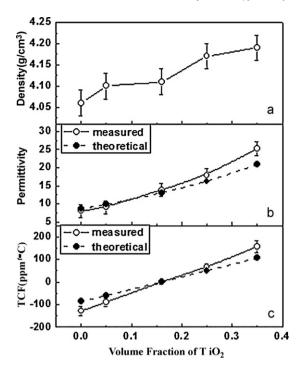
Fig. 1(a) shows the X-ray diffraction patterns of calcined ZnMoO₄ powders, ZnMoO₄–TiO₂ composites cofired with 20 wt% Ag and Fig. 1(b) shows the XRD patterns of (1-x)ZnMoO₄–xTiO₂ mixed phases sintered at 950 °C. The ZnMoO₄ with triclinic wolframite structure was obtained when calcined at 600 °C for 4 h. From Fig. 1(b), it can be concluded that TiO₂ coexists with ZnMoO₄. When the content of TiO₂ increasing, the intensity of the reflections of TiO₂ increases greatly. Finally, a study of the chemical compatibility of ZnMoO₄–TiO₂ compounds with Ag powders has been made. As shown in Fig. 1(a), Ag can form the Ag₂Zn₂(MoO₄)₃ phase with ZnMoO₄ easily, and seems not to react with TiO₂.

Fig. 2 presents the backscattered electron image of the surface of $0.65 \text{ZnMoO}_4 - 0.35 \text{TiO}_2$ sample. From the micrograph, it is seen that there are two types of grains in the specimen and the grain size is in the range of $1-6~\mu\text{m}$. The EDS analysis shows that the light grains as B belong to 2ZnMoO_4 phase and the dark ones as A belong to the 2TiO_2 phase. Since the sintering temperature of pure 2TiO_3 ceramic is about 2TiO_3 ceramic is about 2TiO_3 phase.

Fig. 3(a) presents the densities of the (1-x)ZnMoO₄-xTiO₂ ceramics. It can be seen that the densities of all the samples are larger than $4.06 \, \mathrm{g/cm^3}$, which indicates that all the specimens' relative densities are over 94%. Therefore, all the composite ceramics are well densified below 950 °C. The microwave dielectric properties of the (1-x)ZnMoO₄-xTiO₂ ceramics are shown in Fig. 3(b) and (c). In the composite, the permittivity is determined by the permittivity, volume fraction and the complex form of the composing material [19]. If the composite material is aligned parallel to the electric field, the ε is given as [19]


$$\varepsilon = y_1 \varepsilon_1 + y_2 \varepsilon_2 \tag{2}$$

where ε_1 and ε_2 are permittivities of material 1 and material 2, respectively; y_1 and y_2 are the volume fractions. When the composite material is aligned in series with the electric field, the ε can be obtained as follows [19]


$$\frac{1}{\varepsilon} = \frac{y_1}{\varepsilon_1} + \frac{y_2}{\varepsilon_2} \tag{3}$$

In case the composite material is aligned randomly, the ε follows the empirical logarithmic rule [19]

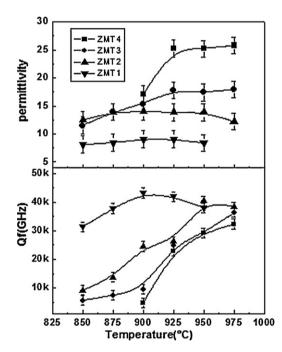

$$\log \varepsilon = y_1 \log \varepsilon_1 + y_2 \log \varepsilon_2 \tag{4}$$

Fig. 2. The backscattered electron micrograph and EDS analysis of $0.65 \text{ZnMoO}_4 - 0.35 \text{TiO}_2$ specimen sintered at $975\,^{\circ}\text{C}$ for $2\,\text{h}$: (a) A region, TiO_2 and (b) B region, ZnMoO_4 .

Fig. 3. Densities and microwave dielectric properties of (1 - x)ZnMoO₄–xTiO₂ compounds sintered at their optimal temperatures for 2 h with x = 0, 0.05, 0.158, 0.25, and 0.35.

Fig. 4. Microwave dielectric properties of (1 - x)ZnMoO₄-xTiO₂ ceramics as a function of sintering temperature.

In the (1-x)ZnMoO₄–xTiO₂ ceramics, the triclinic wolframite ZnMoO₄ phase and tetragonal rutile TiO₂ phase are distributed randomly. So the theoretical permittivity of the mixed ceramic can be gained by logarithmic rule. Fig. 3(b) shows that the permittivity of the composite ceramic increases from 8.0 to 25.2 when the volume fraction of TiO₂ increasing from 0 to 0.35. Although the measured permittivity is a little higher than the theoretical value, it generally accords to the logarithmic rule.

According to the empirical logarithmic rule, the τ_f of the mixed ceramic can be obtained as follows: [13]

$$\tau_f = y_1 \tau_{f1} + y_2 \tau_{f2} \tag{5}$$

where τ_{f1} and τ_{f2} are the τ_f values of material 1 and material 2, respectively. The theoretical and measured τ_f values are plotted in Fig. 3(c). The measured τ_f value shifts from -128.9 to 157.4 ppm/°C as x value increasing from 0 to 0.35. Compared with the previous reports [6,18], the measured τ_f value of pure ZnMoO₄ is a little lower and the measured τ_f value of rutile TiO₂ is a little larger, which may be caused by the different calcination temperatures. The τ_f values of (1-x)ZnMoO₄-xTiO₂ ceramics agree well with the mixture function (5) and the near-zero τ_f value is obtained at x = 0.158.

The permittivities and Q_f values of the composite ceramics as a function of sintering temperature are plotted in Fig. 4. It is seen that the (1-x)ZnMoO₄–xTiO₂ ceramics have good Q_f values at low temperatures. The 0.35ZnMoO₄–0.65TiO₂ composite has a minimum Q_f value (32,300 GHz) and 0.05ZnMoO₄–0.95TiO₂ composite has a maximum Q_f value (43,300 GHz). The 0.842ZnMoO₄–0.158TiO₂ composite with a near-zero τ_f possesses a Q_f value about 40,400 GHz.

4. Conclusion

This study introduced a new dielectric material system $(1-x)\mathrm{ZnMoO_4}-x\mathrm{TiO_2}$ with good microwave dielectric properties. All the samples can be well densified below 950 °C. The X-ray analysis reveals that the triclinic wolframite $\mathrm{ZnMoO_4}$ phase can coexist with the tetragonal rutile $\mathrm{TiO_2}$ phase. Silver reacts with $\mathrm{ZnMoO_4}$ easily to form the $\mathrm{Ag_2Zn_2(MoO_4)_3}$ phase, and seems not to react with $\mathrm{TiO_2}$. When the volume fraction of $\mathrm{TiO_2}$ was 0.158, the ε_{F} , Q_{F} value, and τ_{F} value of the compound were 13.9, 40,400 GHz, and +2.0 ppm/°C, respectively.

Acknowledgements

This work was supported by the National 973-project of China (2009CB623302), NSFC projects of China (61025002 and 109790365) and National Project of International Science and Technology Collaboration (2009DFA51820).

References

- [1] M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53 (2008) 57-90.
- [2] M. Valant, D. Suvorov, J. Am. Ceram. Soc. 83 (2000) 2721–2729.
- [3] A.K. Axelsson, N.M. Alford, J. Eur. Ceram. Soc. 26 (2006) 1933–1936.
- [4] D. Zhou, H. Wang, L.X. Pang, C.A. Randall, X. Yao, J. Am. Ceram. Soc. 92 (2009) 2242–2246.
- [5] S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 26 (2006) 2051–2054.
- [6] G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, J. Eur. Ceram. Soc. 27 (2007) 3063–3067.
- [7] K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Eur. Phys. J. B 41 (2004) 301–306.
 [8] I.S. Cho, S.K. Kang, D.W. Kim, K.S. Hong, J. Eur. Ceram. Soc. 26 (2006) 2007–2010.
- [9] S.H. Yoon, G.K. Choi, D.W. Kim, S.Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 27 (2007) 3087–3091.
- [10] G. Subodh, M.T. Sebastian, J. Am. Ceram. Soc. 90 (2007) 2266-2268.
- [11] C.F. Shih, W.M. Li, M.M. Lin, C.Y. Hsiao, K.T. Hung, J. Alloys Compd. 485 (2009) 408–412.
- [12] Y.C. Liou, Y.T. Chen, W.C. Tsai, J. Alloys Compd. 477 (2009) 537-542.
- [13] L.X. Pang, H. Wang, D. Zhou, X. Yao, J. Alloys Compd. 493 (2010) 626–629.
- [14] W.S. Kim, K.H. Yoon, E.S. Kim, J. Am. Ceram. Soc. 83 (2000) 2327–2329.
 [15] J. Pei, Z.X. Yue, F. Zhao, Z.L. Gui, L.T. Li, J. Alloys Compd. 459 (2008) 390–394.
- [16] S. Hirano, T. Hayashi, A. Hattori, J. Am. Ceram. Soc. 74 (1991) 1320–1324.
- [17] D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 92 (2009) 2931–2936.
- [18] K. Fukuda, R. Kitoh, I. Awai, Jpn. J. Appl. Phys. 32 (1993) 4584–4588.
- [19] Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, Springer, New York, 2005.